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Abstract. The molecular generator coordinate Hartree-Fock method is reviewed. The connection between
a quadrature solution of the generator coordinate Hartree-Fock equations and Roothaan’s equations is
stressed. The relation between linear expansion coefficients and generator coordinate weight functions is
discussed and a numerical and analytical example is provided for the 1s orbital of the hydrogen atom
represented as the integral transform of a Gaussian function. For the same example, the Gauss-Labatto
quadrature is employed to emphasize the implicit integral character of Roothaan’s equations. As a ma-
jor conclusion, the interpretation that every LCAO calculation is actually performing integrations of the
Griffin-Wheeler equations is advanced. Basis sets are therefore abscissas of the implicit quadrature used
in the integration, whereas the linear coefficients automatically incorporate the corresponding weights.
Subsequently, it is shown how to extract the generator coordinate weight function from the LCAO coeffi-
cients which has the advantage of being a characteristic of the physical system under study and not of the
particular calculation being carried out. As such, basis set design becomes how to efficiently sample the
weight function.

PACS. 31.15.Ar Ab initio calculations

1 Introduction

The variational generator coordinate method was intro-
duced by Griffin and Wheeler [1] in 1957 and has proven
to be useful in the solution of one particle problems. In
this formulation the trial one particle function is given by
the integral transform

ψ(x) =

∫
F (ζ)ϕ(x, ζ)dζ, (1)

where ϕ(x, ζ) is the generator function, F (ζ) is a weight
function, x denotes space and spin variables, and ζ is the
generator coordinate – the integration being carried out
through the whole domain of ϕ(x, ζ) in ζ. As such, the
generator function is a functional form only, whereas F (ζ),
the weight function, is allowed to vary until a minimum
value of the energy is obtained.

In 1986, the generator coordinate ansatz was applied
to the Hartree-Fock theory of atoms [2]. Various applica-
tions to atomic systems followed aiming at the design of
universal atomic basis sets [3].

In 1991, DaCosta et al. [4] presented the molecular
Generator Coordinate Hartree-Fock method for closed
shell systems. The key to this method is the functional
form of the molecular orbital for electron ν of a system of
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2I electrons and N nuclei be written as

ψi(ν) =
N∑
n=1

∫
Fi,n(ζ)ϕ(ζ, rν −Rn)dζ. (2)

By taking the trial function Ψ as a Slater determinant over
the ψi, the expression for the electronic energy is

E = 2
I∑
i

hii +
I∑
i

I∑
j

(2Jij −Kij), (3)

where, as usual, h, J , and K have their usual meaning.
Variation of E with respect to the Fi,n(ζ) keeping

ψi(ν) normalized leads to the molecular Griffin-Wheeler-
Hartree-Fock (GWHF) equations

N∑
n=1

∫
dζ[Fn,n′(ζ, ζ

′)− εiSn,n′(ζ, ζ
′)]Fi,n(ζ) = 0,

i = 1, . . . , I, (4)

where the εi are the orbital energies,

Fn,n′(ζ, ζ
′) = 〈ϕ(ζ, rν −Rn)|h(ν)

+
I∑
j

[2Jj(ν)− kj(ν)]|ϕ(ζ′, rν −Rn′)〉 (5)
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and

Sn,n′(ζ, ζ
′) = 〈ϕ(ζ, rν −Rn)|ϕ(ζ′, rν −Rn′)〉. (6)

The form of ψi(ν) in equation (2) implies that in each
molecular calculation one has to determine the weight
function Fi,n(ζ) for each orbital at each nucleus.

In this paper we discuss the relationship between
the Generator Coordinate Hartree-Fock method and the
LCAO (linear combination of atomic orbitals) approxima-
tion to the Hartree-Fock equations. We then recognize the
importance in obtaining the weight functions, and further
we show how to extract the weight functions from LCAO
calculations. Finally, we replace basis set exponents by a
quadrature and show that this procedure leads to the ex-
act weight function.

2 Comparison between the generator
coordinate and Roothaan’s expansions
and extraction of weight functions
from LCAO coefficients

Replacing the integral in equation (4) by a quadrature T ,
with abscissae ζt and weights wt, one obtains

N∑
n

∑
t

[Fn,n′(ζt, ζ
′
t)− εiSn,n′(ζt, ζ

′
t)]wtFi,n(ζt) ∼= 0, (7)

in which case the ψi(ν, T ) approximations to ψi(ν), which
are now parametrically dependent on the quadrature T ,
become

ψi(ν) ∼= ψi(ν, T ) =
N∑
n

∑
t

wtFi,n(ζt)ϕ(ζt, rν −Rn). (8)

Comparing equations (7, 8) with Roothaan’s equation [5]
one easily recognizes that the exponents of the basis set
are precisely the set of abscissae of the chosen quadrature
and the LCAO orbital is

ψi(ν, T ) = ψ
(LCAO)
i (ν)

=
N∑
n

∑
t

Ci,n,tϕ(ζ, rν −Rn), (9)

where

Ci,n,t = wtFi,n(ζt) (10)

are precisely the LCAO coefficients.
Roothaan’s equations can therefore be understood as

the discretized form of the Generator Coordinate Hartree-
Fock equations. The linear coefficients can consequently
be regarded as functionally dependent on ζt and paramet-
rically dependent on the quadrature as a whole.

Therefore, if the purpose is to determine Fi,n(ζ) from a
LCAO calculation [3], then, basis sets could be comprised
of orbitals with exponents equal to ζt = ζmin+δt, where t

is the quadrature index and δ a constant [3]. For the case
of Gaussian or Slater type functions a relabeling of the
coordinate to Ω such that

Ω =
ln ζ

A
or ζ = eAΩ (A > 1), (11)

introduced by Mohallem [6], is very efficient for running
usual calculations. Even-tempered orbitals [7], for exam-
ple, have exponents equally spaced in Ω and form a highly
efficient and cost-effective set of orbitals [8]. Accordingly,
the form of the molecular orbitals, equation (2), becomes

ψi(ν) =
N∑
n=1

∫ ∞
−∞

Fi,n(eAΩ)AeAΩϕ(eAΩ, rν −Rn)dΩ,

(12)

since dζ = AeAΩdΩ.
Replacing the integral in equation (12) by a quadrature

we obtain

ψi(ν) ∼= ψi(ν, T )

=
N∑
n=1

∑
t

wtFi,n(eAΩt)AeAΩt

× ϕ(eAΩt , rν −Rn). (13)

By setting ∆Ω constant we force the non-end point
weights to be constant. For a sufficiently large number of
abscissae the quadrature becomes essentially trapezoidal
and, as such, equation (12) can be rewritten as

ψi(ν, T ) =
N∑
n=1

∑
t

µt∆ΩFi,n(eAΩt)AeAΩt

× ϕ(eAΩt , rν−Rn) (14)

where µt = wt/∆Ω and will be found to be very close to
unity for the non-end points.

The LCAO linear coefficients given by equation (10)
now become

Ci,n,t = µt∆ΩAe
AΩtFi,n(ζt), (15)

and the weight function at abscissa ζt is

Fi,n(ζt) =
Ci,n,t

µt∆ΩAeAΩt
· (16)

3 The importance of intrisinc weight
functions: The ground state orbital
of the hydrogen atom as an example

Given a generator function ϕ(ζ, rν −Rn), which can be a
Gaussian-type orbital (GTO), a Slater-type orbital (STO)
or any other type of function, the variational task is to
find the weight function Fi,n(ζ) which minimizes the total
energy of the system under study.
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The LCAO method is a way of sampling the ζ space
with an adequate mesh to obtain the best energy and to-
tal wave function for the system. Here it is important to
emphasize that once an arbitrary set of abscissae is taken,
the LCAO procedure will automatically find weights that
do not intend to minimize the error in evaluating the wave
function, equation (2), but minimize the error in the simul-
taneous evaluation of the I integrals in equation (4) sub-
ject to the orthonormality restriction of the set of molec-
ular orbitals.

For a given problem, once the generator function
(whose integral transform can generate any function) is
chosen, then the weight functions for each molecular or-
bital for each nucleus both exist and are unique [9]. As
a result, the quest is to obtain estimates of these basis
set weight functions, from which efficient atom adapted
or universal basis sets can be designed.

From equation (10), the LCAO coefficients Ci,n,t are
not always measures of the weight function Fi,n(ζt). For
the same molecular system in the same geometry and elec-
tronic state, a coefficient Ci,n,t corresponding to ζt in one
basis set can be different from another one for the same
ζt; and thus, the weights are different despite the fact that
Fi,n(ζt) is the same for both.

Likewise, plots of LCAO coefficients as functions of ζ
are not plots of the weight functions Fi,n(ζ) because the
corresponding weights wt are not necessarily all identical.

The example that will be used in this paper will be that
of the orbital of the ground state of one-electron atoms
computed from GTOs. The exact radial solution of this
problem is known (λ = 1 for the hydrogen atom). Written
in terms of the generator coordinate ansatz we have

2λ3/2e−λr =

∫ ∞
0

F (λ, ζ)G(r, ζ)dζ, (17)

where we choose a normalized 1s GTO as generator func-
tion

G(r, ζ) =

(
2ζ

π

)1/4

2(2ζ)1/2e−ζr
2

, (18)

and the weight function for the ground state of the one-
electron atom is

F (λ, ζ) =

(
λ

2ζ

)2(
2λ2

πζ

)1/4

exp

(
−λ2

4ζ

)
. (19)

In order to extract the weight function, one has to have
an idea of the weight function because a reasonable start-
ing value for ∆Ω, Ωmin must be set. Generally, an initial
rough LCAO calculation should provide that. The Ωmin
is therefore the most diffuse of the orbitals after which the
others are found, i.e., Ωt = Ωmin + t∆Ω.

By choosing Ωmin = −0.68 (ζ = 0.017) and A = 6.0,
we performed several calculations with 17 different GTOs
for the hydrogen atom case. Here it is interesting to point
out that A = 6.0 is a optimum value for A according to
the suggestion of Mohallem and Trsic [10], and it has no
deep meaning in our calculations.

Fig. 1. Hydrogen atom ground state case: quality of the en-
ergy log(E∆Ω − Eexact)/Eh as a function of ∆Ω for 17 GTO
calculations. E∆Ω is the energy obtained in calculations for
each ∆Ω, and Eexact is the exact energy −0.5Eh.

Figure 1 shows a plot of a measure of the quality of the
energy, log[(E∆Ω−Eexact)/Eh] (where E∆Ω is the energy
obtained for each ∆Ω and Eexact is the exact energy for
this problem: −0.5Eh), as a function of ∆Ω. Clearly, the
best ∆Ω is 0.13, and thus ∆Ω = 0.13 or larger can be
used to extract the weight function.

In fact, in carrying on a LCAO calculation one is
solving a numerical eigenvalue-eigenvector problem and,
therefore, as the exponents become closer, the linear co-
efficients start to oscillate in sign besides becoming er-
ratic in order to annihilate each other and consequently
remove the quasi-linear dependency. When that happens,
the quality of the resulting wave function deteriorates, and
that is the reason why the energy worsens in Figure 1 for
∆Ω lower than 0.13.

The same behavior can be seen in Figure 2 which shows
plots of the LCAO coefficients as functions of Ω. The first
two curves, with ∆Ω = 0.18 and 0.13 behave correctly.
The third curve, with ∆Ω = 0.08, displays the above men-
tioned oscillations and is totally useless for the purpose of
extracting the weight function.

The problem we now face is that we need to know the
exact weight function which is a continuous function of ζ.
On the other hand, we cannot run a LCAO calculation
with an arbitrary fine mesh because of the problem dis-
cussed above. Then, how to extract the weight function
inside the intervals of Ω of a given calculation? The solu-
tion we present here is to run different calculations with
the same ∆Ω and basis set size but with the Ωmin of the
second calculation in between the first two Ω values (i.e.,
between Ωmin and Ωmin + ∆Ω) of the first calculation.
Table 1 shows the results of two calculations performed
in this manner. Clearly, the end points in each run are
predictably useless. For large values of Ω (more compact
GTOs) the last two LCAO coefficients don’t yield good
estimates of the exact weight function. For small values
of Ω (more diffuse GTOs) only the first LCAO coefficient
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Table 1. Comparison between the LCAO expansion coefficients C and the extracted and exact weight function F for the
H-atom ground state represented by a Gaussian generator function.

Ω (generator coordinate) C (first run) C (second run) Fextracted Fexact

−0.680 3.73 ×10−4 2.45 ×10−2 8.21 ×10−4

−0.605 −7.86 ×10−4 −3.29 ×10−2 6.33 ×10−2

−0.530 2.73 ×10−2 7.31 ×10−1 7.01 ×10−1

−0.455 1.36 ×10−1 2.31 2.25

−0.380 2.99 ×10−1 3.25 3.28

−0.305 4.15 ×10−1 2.87 2.89

−0.230 4.20 ×10−1 1.85 1.84

−0.155 3.42 ×10−1 9.63 ×10−1 9.60 ×10−1

−0.080 2.44 ×10−1 4.37 ×10−1 4.39 ×10−1

−0.005 1.61 ×10−1 1.84 ×10−1 1.85 ×10−1

0.070 1.01 ×10−1 7.39 ×10−2 7.36 ×10−2

0.145 6.11 ×10−2 2.85 ×10−2 2.84 ×10−2

0.220 3.59 ×10−2 1.07 ×10−2 1.07 ×10−2

0.295 2.10 ×10−2 3.98 ×10−3 3.99 ×10−3

0.370 1.23 ×10−2 1.48 ×10−3 1.47 ×10−3

0.445 7.03 ×10−3 5.41 ×10−4 5.40 ×10−4

0.520 4.00 ×10−3 1.96 ×10−4 1.97 ×10−4

0.595 2.30 ×10−3 7.18 ×10−5 7.20 ×10−5

0.670 1.32 ×10−3 2.64 ×10−5 2.62 ×10−5

0.745 7.52 ×10−4 9.57 ×10−6 9.54 ×10−6

0.820 4.25 ×10−4 3.45 ×10−6 3.47 ×10−6

0.895 2.44 ×10−4 1.26 ×10−6 1.26 ×10−6

0.970 1.40 ×10−4 4.60 ×10−7 4.59 ×10−7

1.045 7.92 ×10−5 1.67 ×10−7 1.67 ×10−7

1.120 4.55 ×10−5 6.10 ×10−8 6.06 ×10−8

1.195 2.61 ×10−5 2.23 ×10−8 2.20 ×10−8

1.270 1.40 ×10−5 7.65 ×10−9 7.80 ×10−9

1.345 7.94 ×10−6 2.76 ×10−9 2.91 ×10−9

1.420 5.52 ×10−6 1.22 ×10−9 1.06 ×10−9

1.495 3.17 ×10−6 4.48 ×10−10 3.83 ×10−10

1.570 8.05 ×10−7 7.26 ×10−11 1.39 ×10−10

1.645 4.53 ×10−7 2.60 ×10−11 5.06 ×10−11

1.720 1.04 ×10−6 3.79 ×10−11 1.84 ×10−11

1.795 5.91 ×10−7 1.38 ×10−11 6.68 ×10−12

(in each run) is a poor predictor of the exact weight func-
tion. The other values yield the exact weight function very
nicely.

Figure 3 shows plots of the LCAO coefficients and the
extracted and exact weight functions (which in the case
of the plot are superimposed). The reader should observe
that the maximum in the weight function curve is different
from the maximum in the LCAO coefficients curve. More-
over, the maximum of the weight functions is shifted to
the left, to a region of more diffuse GTOs. Consequently,
diffuse functions in a basis set seem to be more impor-
tant than can be inferred, in a first glance, from LCAO

calculations. Besides, one can now clearly see that there
is less information in plotting LCAO coefficients as func-
tions of Ω because what would be obtained is dependent
on the choice of the basis set used and would belong to
that specific calculation.

4 LCAO-SCF calculations are integrations
in ζ space

The quadrature interpretation has been previously rec-
ognized as approximating an integral equation by a set
of linear homogeneous equations in the course of solving
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Table 2. Extraction of the weight function from linear coefficients obtained from a Gauss-Lobatto derived basis set.

x Ω ζ C w Fextracted Fexact
Fexact

Fextracted

−1.00 −0.500 4.98 ×10−1 2.15 ×10−3 2.78 ×10−2 2.59 ×10−1 1.26 4.86

−9.00 ×10−1 −0.400 9.09 ×10−2 3.40 ×10−1 1.65 ×10−1 3.77 3.14 0.83

−6.77 ×10−1 −0.177 3.45 ×10−1 6.37 ×10−1 2.75 ×10−1 1.12 1.18 1.06

−3.63 ×10−1 0.137 2.27 1.50 ×10−1 3.46 ×10−1 3.18 ×10−2 3.15 ×10−2 0.99

0.00 0.500 2.01 ×10 1.14 ×10−2 3.72 ×10−1 2.54 ×10−4 2.58 ×10−4 1.02

3.62 ×10−1 0.863 1.77 ×102 7.22 ×10−4 3.46 ×10−1 1.96 ×10−6 1.94 ×10−6 0.99

6.77 ×10−1 1.177 1.17 ×103 5.25 ×10−5 2.75 ×10−1 2.73 ×10−8 2.80 ×10−8 1.03

9.00 ×10−1 1.400 4.44 ×103 3.15 ×10−6 1.65 ×10−1 7.14 ×10−10 1.39 ×10−9 1.95

1.00 1.500 8.10 ×103 5.95 ×10−6 2.78 ×10−2 3.67 ×10−9 3.58 ×10−10 0.10

x: abscissae of the Gauss-Lobatto quadrature.
Ω: generator coordinate in the range of −0.5 to +1.5 obtained from x.
ζ: obtained from Ω through ζ = exp(AΩ), A = 6.0.
Fextracted: extracted weight function according to equation (20).
Fexact: exact weight function, equation (19).

Fig. 2. Hydrogen atom ground state case: plots of LCAO co-
efficients as functions of Ω for three calculations each using
17 GTOs with different values of ∆Ω.

atomic problems [11–14] (they have considered the inte-
gral equation in the context of the Griffin-Hill-Wheeler
formalism). However, none has so far understood the prob-
lem the other way around, i.e., interpreted the LCAO
Roothaan Hartree-Fock formalism as being a quadrature
approximation to an implicit integral equation problem as
we do here.

In order to provide support to our point that a LCAO
calculation is always a quadrature approximation to an
implicit integral equation, we shall extract the weight
functions from a basis set originated from an explicit
quadrature. The hydrogen 1s orbital represented by a
Gaussian function will again be used as a test case.

By choosing as integration interval in Ω the range from
Ω = −0.5 to Ω = 1.5 and sampling this interval with
a suitable linear transformation of the abscissae from a

Fig. 3. Hydrogen atom ground state case: plots of LCAO co-
efficients and of the weight function as functions of Ω.

9-point Gauss-Lobatto quadrature [15] which is defined
from −1 to 1, we obtained a nine GTO basis set. The
linear coefficients obtained after the SCF calculation can
then be transformed into the weight function by using

Fi,n(ζt) =
Ci,n,t

hwiAeAΩt
, (20)

where h = [1.5− (−0.5)]/2 = 1 and wi are weights of the
Gauss-Lobatto quadrature. Table 2 shows results where
one can see that the predicted weight function is indeed
similar to the exact one, except for the end points.

5 Conclusions

The interpretation that every LCAO calculation is ac-
tually performing numerical integration of the generator
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coordinate Griffin-Wheeler equation is advanced. Expo-
nents of the basis sets are therefore abscissae of the im-
plicit quadrature used in the integration, whereas the
linear coefficients automatically incorporate the corre-
sponding weights. We were then able to extract from the
LCAO coefficients the weight function, a characteristic of
the physical system under study and not of a particular
calculation.

Basis set design now becomes a matter of knowing the
weight function for the particular problem and of sampling
it such that the error in equation (10) becomes minimized.
Consequently, either universal or adapted basis sets to a
particular physical system can then be created based on
wavefunction and density criteria and not only on the en-
ergy criterion alone.
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